INTRODUCTION

This Consumer Confidence Report was created to help City of Sacramento water customers understand where their water comes from and what it contains.

Routine water supply testing for more than 100 substances is performed to confirm that your water meets or exceeds all federal and state drinking water standards.

This report, published on June 3, 2024, summarizes detected water quality results for the period of January 1 to December 31, 2023 and may include earlier monitoring data.

The City is committed to providing customers with up-to-date information on their drinking water. For more detailed information, visit www.sacramentowaterquality.com

WATER EFFICIENCY

Water efficiency is a way of life in California, and the City of Sacramento continues to encourage water conservation. Find tips to save water and available rebates at www.sacwaterwise.com
Eighty percent of the City of Sacramento’s water supply comes from the American and Sacramento rivers, and about 20 percent comes from groundwater wells. For more information on sources of water, see the “Source Water Assessment” on page 03.
Source Water Assessment

A watershed sanitary survey evaluates source water quality and potential watershed contaminant sources to provide information that helps maintain and improve source water protection, the first barrier in protecting public health. An evaluation of water treatment plant capabilities and treated water quality provides an assessment of the ability of a water utility to treat their source water.

Initial reports for the Sacramento River and American River water sources were completed in 2000 and 2001. These reports indicated that both rivers are vulnerable to contaminants from recreational activities and that the Sacramento River is also vulnerable to agricultural contaminants. The City of Sacramento, in partnership with several other water utilities, complete Watershed Sanitary Survey updates of the river water sources every five years. These updates were most recently completed in 2020 and 2023 for the Sacramento and American rivers, respectively.

An assessment of the City’s groundwater wells was completed in January 2001. Due to their proximity to potential contaminant sources, the wells north of the American River are considered vulnerable to sewage collection systems, leaking underground storage tanks, known contaminants, agricultural drainage, gas stations, dry cleaners, metal plating and chemical processing storage facilities, electrical/electronic manufacturing, and automobile repair and body shops. Wells south of the American River are considered vulnerable to leaking underground storage tanks and sewage collection systems.

Despite these potential vulnerabilities, your water continues to meet or exceed all state and federal drinking water standards. Please call 916-808-5454 to request a summary of the assessments or make an appointment for an in-person viewing.
Required Disclosures for Drinking Water Consumers

This information is presented to further educate consumers about drinking water contaminants.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

- **Inorganic contaminants**, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

- **Pesticides and herbicides**, that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application and septic systems.

- **Radioactive contaminants** that can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).
Water Quality Analysis Results For 2023

Your water meets or exceeds all federal and state drinking water standards.

1 Regulated for Public Health (Primary Drinking Water Standard)

<table>
<thead>
<tr>
<th>Constituent (Unit)</th>
<th>Highest Amount Allowed MCL, MRDL or TT</th>
<th>State or Federal Goal PHG, MCLG or MRDLG</th>
<th>Year Monitored</th>
<th>System Average</th>
<th>PRIMARY WATER SUPPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine as Cl2 (mg/L)</td>
<td>4</td>
<td>4</td>
<td>2023</td>
<td>0.7</td>
<td>E.A. Fairborn Water Treatment Plant (American River)</td>
</tr>
<tr>
<td>Haloacetic Acids (µg/L)</td>
<td>60</td>
<td>NA</td>
<td>2023</td>
<td>45</td>
<td>ND - 13.8</td>
</tr>
<tr>
<td>Trihalomethanes (µg/L)</td>
<td>80</td>
<td>NA</td>
<td>2023</td>
<td>68</td>
<td>5.5 - 53.8</td>
</tr>
<tr>
<td>Control of DBP Precursors - TOC (mg/L)</td>
<td>2.0</td>
<td>NA</td>
<td>2023</td>
<td>NA</td>
<td>10 - 74</td>
</tr>
<tr>
<td>Arsenic (µg/L)</td>
<td>10</td>
<td>0.004</td>
<td>2023</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Barium (mg/L)</td>
<td>1</td>
<td>2</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper (mg/L)</td>
<td>1.3 (AL)</td>
<td>0.3</td>
<td>2023</td>
<td>0.06</td>
<td>ND</td>
</tr>
<tr>
<td>Fluoride in source water (mg/L)</td>
<td>2.0</td>
<td>1</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Fluoride in treated water (mg/L)</td>
<td>2.0</td>
<td>1</td>
<td>2023</td>
<td>0.7</td>
<td>ND</td>
</tr>
<tr>
<td>Lead (µg/L)</td>
<td>15 (AL)</td>
<td>0.2</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrates as Nitrogen (mg/L)</td>
<td>10</td>
<td>10</td>
<td>2023</td>
<td>1.5</td>
<td>ND</td>
</tr>
<tr>
<td>Selenium (µg/L)</td>
<td>50</td>
<td>30</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Combined Radon (pCi/L)</td>
<td>5</td>
<td>0</td>
<td>2025 - 2023</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Gross Alpha (pCi/L)</td>
<td>15</td>
<td>0</td>
<td>2025 - 2023</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Uranium (pCi/L)</td>
<td>20</td>
<td>0</td>
<td>2025 - 2023</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>1</td>
<td>NA</td>
<td>2023</td>
<td>NA</td>
<td>ND</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>at least 95% of samples ≤ 0.3</td>
<td>NA</td>
<td>2023</td>
<td>0.09</td>
<td>ND</td>
</tr>
</tbody>
</table>

Key Terms and Abbreviations
- MCL: Maximum Contaminant Level: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLs are set by the U.S. Environmental Protection Agency.
- MRDL: Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- MRDLG: Maximum Residual Disinfectant Level Goal: The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- ND: Not detected
- AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- PHG: Public Health Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
- TOC: Total Organic Carbon: A measurement of the potential of a waste to form DBPs.
- TON: Threshold Odor Number: The greatest dilution of a sample with odor-free water that yields a detectable odor.

- Drinking water disinfectant added for treatment
- Disinfection By-Products: Substances that can form during a reaction of a disinfectant with naturally present organic matter in the water
- Interior corrosion of household water plumbing systems
- Erosion of natural deposits
- Water additive that promotes strong teeth
- Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
- Internal corrosion of household water plumbing systems
- Erosion of natural deposits
- Soil runoff

- Groundwater
- Sacramento River Water Treatment Plant
- City of Sacramento Groundwater

(All Range of results observed in distribution system; samples with ND chlorine undergo further analysis to ensure water supply safety.

(B) Compliance with MCL confirmed quarterly lower three month; system average shown represents highest locational running annual average calculated during any of the four quarters of 2023 while range represents all results observed in distribution system. Individual results may exceed the MCL as long as the running annual average does not.

(C) Compliance with TT confirmed quarterly lower three month; value shown represents highest running annual average calculated during any of the four quarters of 2023.

(D) In accordance with State law, the City of Sacramento adjusts the natural levels of fluoride in our water supplies to the optimal level determined by the Centers for Disease Control and Prevention. More information about fluoridation is available at: www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml

More information about fluoridation is available at: www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.shtml

- Fluoride in source water (mg/L)
- Fluoride in treated water (mg/L)
- Lead (µg/L)
- Nitrates as Nitrogen (mg/L)
- Selenium (µg/L)
- Combined Radon (pCi/L)
- Gross Alpha (pCi/L)
- Uranium (pCi/L)
- Turbidity (NTU)
- Turbidity (NTU)
2 Regulated for Drinking Water Aesthetics (Secondary MCL)

<table>
<thead>
<tr>
<th>Constituent (Unit)</th>
<th>Highest Amount Allowed MCL</th>
<th>Year Monitored</th>
<th>System Average</th>
<th>E.A. Fairbairn Water Treatment Plant (American River)</th>
<th>Sacramento River Water Treatment Plant</th>
<th>City of Sacramento Groundwater</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride (mg/L)</td>
<td>500</td>
<td>2023</td>
<td>33</td>
<td>ND</td>
<td>5.8</td>
<td>19 – 64</td>
<td>Erosion or leaching of natural deposits</td>
</tr>
<tr>
<td>Color (units)</td>
<td>15</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND – 5 ^A</td>
<td>Naturally occurring organic materials</td>
<td></td>
</tr>
<tr>
<td>Odor (TON)</td>
<td>3</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND – 15 ^A</td>
<td>Naturally occurring organic materials</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance (µS/cm)</td>
<td>1600</td>
<td>2023</td>
<td>386</td>
<td>66.9</td>
<td>162</td>
<td>310 – 731</td>
<td>Substances that form ions when in water</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>500</td>
<td>2023</td>
<td>11</td>
<td>4.9</td>
<td>17</td>
<td>5.6 – 35</td>
<td>Erosion or leaching of natural deposits</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>1000</td>
<td>2023</td>
<td>254</td>
<td>40</td>
<td>100</td>
<td>200 – 500</td>
<td>Erosion or leaching of natural deposits</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>5</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND – 4.3 ^A</td>
<td>Soil runoff</td>
<td></td>
</tr>
</tbody>
</table>

(A) Range of all results observed in distribution system.

(G) There was no MCL for hexavalent chromium in effect during 2023; The previous MCL of 10 µg/L was withdrawn on September 11, 2017.

(H) The Unregulated Contaminant Monitoring Rule (UCMR) requires a new list of no more than 30 unregulated contaminants to be monitored by public water systems every five years in order to assist the U.S. Environmental Protection Agency (EPA) in regulatory decisions.

(I) The fourth UCMR required monitoring for Haloacetic Acid groups “HAA5”, “HAABr6” and “HAA9”, in addition to regulated Haloacetic Acids (HAA5) presented in Table 1.

For more information visit www.epa.gov/sites/default/files/2017-03/documents/ucmr4-fact-sheet-general.pdf

3 Other Parameters of Interest to Customers / Constituents With No Established MCL

<table>
<thead>
<tr>
<th>Constituent (Unit)</th>
<th>Year Monitored</th>
<th>System Average</th>
<th>E.A. Fairbairn Water Treatment Plant (American River)</th>
<th>Sacramento River Water Treatment Plant</th>
<th>City of Sacramento Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mg/L)</td>
<td>2023</td>
<td>26</td>
<td>8.5</td>
<td>17</td>
<td>18 – 56</td>
</tr>
<tr>
<td>Chromium, Hexavalent (µg/L) ^A</td>
<td>2023</td>
<td>4.4</td>
<td>ND</td>
<td>ND</td>
<td>ND – 7.6</td>
</tr>
<tr>
<td>Hardness (mg/L)</td>
<td>2023</td>
<td>135</td>
<td>26</td>
<td>61</td>
<td>84 – 284</td>
</tr>
<tr>
<td>Hardness (grains per gallon)</td>
<td>2023</td>
<td>7.9</td>
<td>1.5</td>
<td>3.6</td>
<td>4.9 – 17</td>
</tr>
<tr>
<td>Magnesium (mg/L)</td>
<td>2023</td>
<td>17</td>
<td>11</td>
<td>4.9</td>
<td>9.7 – 37</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>2023</td>
<td>24</td>
<td>14</td>
<td>6.6</td>
<td>16 – 43</td>
</tr>
<tr>
<td>Total Alkalinity (mg/L)</td>
<td>2023</td>
<td>123</td>
<td>17</td>
<td>49</td>
<td>94 – 230</td>
</tr>
<tr>
<td>Manganese (µg/L)</td>
<td>2018 - 2020</td>
<td>2.3</td>
<td>0.8</td>
<td>ND</td>
<td>ND – 17</td>
</tr>
<tr>
<td>Total HAA5 (µg/L) ^H</td>
<td>2018 - 2020</td>
<td>24.1</td>
<td></td>
<td></td>
<td>4.2 – 35 ^A</td>
</tr>
<tr>
<td>Total HAA6Br (µg/L) ^H</td>
<td>2018 - 2020</td>
<td>3.4</td>
<td></td>
<td></td>
<td>1.0 – 7.8 ^A</td>
</tr>
<tr>
<td>Total HAA9 (µg/L) ^H</td>
<td>2018 - 2020</td>
<td>27</td>
<td></td>
<td></td>
<td>5.0 – 38 ^A</td>
</tr>
<tr>
<td>Lithium (µg/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 22</td>
</tr>
<tr>
<td>Perfluorobutanoic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 7.4</td>
</tr>
<tr>
<td>Perfluorobutanesulfonic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 6.2</td>
</tr>
<tr>
<td>Perfluoroheptanoic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 4.4</td>
</tr>
<tr>
<td>Perfluorohexanoic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 5.7</td>
</tr>
<tr>
<td>Perfluoroheptanesulfonic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 19</td>
</tr>
<tr>
<td>Perfluorooctanoic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 17</td>
</tr>
<tr>
<td>Perfluoroctanesulfonic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 36</td>
</tr>
<tr>
<td>Perfluoropentanoic acid (ng/L)</td>
<td>2023</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND – 6.4</td>
</tr>
</tbody>
</table>

(A) Range of all results observed in distribution system.

(G) There was no MCL for hexavalent chromium in effect during 2023; The previous MCL of 10 µg/L was withdrawn on September 11, 2017.

(H) The Unregulated Contaminant Monitoring Rule (UCMR) requires a new list of no more than 30 unregulated contaminants to be monitored by public water systems every five years in order to assist the U.S. Environmental Protection Agency (EPA) in regulatory decisions.

(I) The fourth UCMR required monitoring for Haloacetic Acid groups “HAA5”, “HAABr6” and “HAA9”, in addition to regulated Haloacetic Acids (HAA5) presented in Table 1.

For more information visit www.epa.gov/sites/default/files/2017-03/documents/ucmr4-fact-sheet-general.pdf
LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with customer service lines and home plumbing. The City of Sacramento is responsible for providing high quality drinking water but cannot control the variety of materials used in customer plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA Safe Drinking Water Hotline 1-800-426-4791 or at www.epa.gov/lead

LEAD IN SCHOOLS
The City of Sacramento from 2017 to 2019 provided lead testing to all public schools pre-kindergarten to 12th grade that receive City of Sacramento water, as well as private schools that opted to participate. More than 600 samples were tested from 132 schools, and results were non-detect (less than 5 micrograms per liter) in 97 percent of the samples. All results are publicly available on the State Water Board’s website: www.waterboards.ca.gov/drinking_water/certlic/drinkwater/leadsamplinginschools.html

CYANOTOXINS
Microcystins and cylindrospermopsin are algal toxins produced by naturally occurring cyanobacteria in surface water sources (such as the American and Sacramento rivers). These compounds are subject to a U.S. EPA Health Advisory and due to their potential presence in our source waters, the City of Sacramento voluntarily monitors for these compounds during certain seasons, typically summer through late fall. There were no detections of microcystins or cylindrospermopsin during routine monitoring in 2023. For more information, visit: www.epa.gov/habs/epa-drinking-water-health-advisories-cyanotoxins

What You Should Know About...

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)
According to the California State Water Resources Control Board Division of Drinking Water, exposure to per- and polyfluoroalkyl substances (which are known as PFAS) through drinking water has become an increasing concern due to the tendency of PFAS to accumulate in groundwater. PFAS are a large group of human-made chemicals that have been used in waterproof, stain-resistant, or non-stick consumer products. In addition, they have been used in firefighting foam and various industrial processes.

As part of our mission to provide City customers with drinking water of the highest quality, the City of Sacramento is committed to continued monitoring, public notification, and effective management of this emerging water quality issue. For more detailed information, visit: www.cityofsacramento.gov/utilities/water-quality/frequently-asked-questions/pfas
EARTHY OR MUSTY TASTE AND ODOR
Some customers may notice an “earthy” taste in City drinking water, most often in late summer. This is due to the presence of geosmin and 2-methylisoborneol, which are odor compounds that are not removed through conventional water treatment. Although these compounds do not affect the safety of the City’s drinking water, some customers find the taste and odor to be unpleasant. Chilling the water can help improve the taste.

REVISED TOTAL COLIFORM RULE COMPLIANCE STATUS
The Revised Total Coliform Rule protects public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials, specifically total coliform and E. coli bacteria. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. Additionally, water systems that exceed the E. coli maximum contaminant level are required to issue public notification within 24 hours. On June 21, 2023, one routine sample tested positive for E. coli but repeat samples tested negative for total coliforms (and E. coli), demonstrating that the E. coli maximum contaminant level was not exceeded. The City of Sacramento was in compliance with the rule throughout 2023.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)
According to the California State Water Resources Control Board Division of Drinking Water, exposure to per- and polyfluoroalkyl substances (which are known as PFAS) through drinking water has become an increasing concern due to the tendency of PFAS to accumulate in groundwater. PFAS are a large group of human-made chemicals that have been used in waterproof, stain-resistant, or non-stick consumer products. In addition, they have been used in firefighting foam and various industrial processes.

As part of our mission to provide City customers with drinking water of the highest quality, the City of Sacramento is committed to continued monitoring, public notification, and effective management of this emerging water quality issue. For more detailed information, visit: www.cityofsacramento.gov/utilities/water-quality/frequently-asked-questions/pfas
Microcystins and cylindrospermopsin are algal toxins produced by naturally occurring cyanobacteria in surface water sources (such as the American and Sacramento rivers). These compounds are subject to a voluntary monitoring in our source waters, the City of Sacramento is responsible for providing high quality drinking water to its customers. The City of Sacramento from 2017 to 2019 provided drinking water that is provided up to the property line, backflow preventer, or water meter (whichever comes first) of water customers within the City of Sacramento service area.

Notice of Opportunity for Public Participation

The Sacramento City Council generally holds public meetings on Tuesdays at 2 p.m. and/or 5 p.m. in the City Council Chambers at 915 I Street, Sacramento, CA 95814. You can access City Council agendas at www.cityofsacramento.gov/mayor-council

Potability Statement

The City of Sacramento water supply meets all potability requirements as set forth by the U.S. EPA and the California Safe Drinking Water Act. Title 22. This certification applies to City of Sacramento water that is provided up to the property line, backflow preventer, or water meter (whichever comes first) of water customers within the City of Sacramento service area.

Up-to-Date Water Quality Information is Available at

www.sacramentowaterquality.com

To Report a Concern

City of Sacramento, Department of Utilities
311 or 916-264-5011
24 hours a day, 7 days a week
www.cityofsacramento.gov/utilities

For Questions About This Report, Contact:

Rory Hartkemeyer, Program Specialist,
Water Quality Lab
City of Sacramento, Department of Utilities
916-808-3738
rHartkemeyer@cityofsacramento.org

Notice of Opportunity for Public Participation

The Sacramento City Council generally holds public meetings on Tuesdays at 2 p.m. and/or 5 p.m. in the City Council Chambers at 915 I Street, Sacramento, CA 95814. You can access City Council agendas at www.cityofsacramento.gov/mayor-council

Potability Statement

The City of Sacramento water supply meets all potability requirements as set forth by the U.S. EPA and the California Safe Drinking Water Act. Title 22. This certification applies to City of Sacramento water that is provided up to the property line, backflow preventer, or water meter (whichever comes first) of water customers within the City of Sacramento service area.

Up-to-Date Water Quality Information is Available at

www.sacramentowaterquality.com

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse City of Sacramento a 311 para asistirlo en español.

本報告包含閣下飲用水嘅重要訊息。 如需廣東話垂詢，請聯絡 City of Sacramento 1391 35th Avenue, Sacramento CA 95822 / 311。

这份报告有关于您的饮用水的重要讯息。请用以下地址和电话联系 City of Sacramento 以获得中文的帮助: 1391 35th Avenue, Sacramento CA 95822 / 311

这份報告含有關於您的飲用水的重要訊息。請用以下地址和電話聯繫 City of Sacramento 以獲得中文的幫助1391 35th Avenue, Sacramento CA 95822 / 311

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ với City of Sacramento tại 311 để được trợ giúp bằng tiếng

Tsab ntawv no muaj cov ntsiab lus tseem ceeb hais txog koj cov dej haus. Thov hu rau City of Sacramento ntawm 311 yoj koj xav tao kev pab hais lus Hmoob.

熬過涼時環境前要保持將水放冷來提高水質。於2023年6月21日，其中一個例行樣本測試顯示高於faecal coliform最大容許濃度。Sacramento is committed to continued monitoring, public notification, and effective management of this contaminant level was not exceeded. The City of Sacramento was in compliance with the rule that exceed the E. coli maximum contaminant level.

Stay Connected!
Visit: cityofsacramento.gov/utilities

www.facebook.com/SacramentoCityUtilities
www.tiktok.com/@cityofacutilities
www.instagram.com/sacdou